Hypergeometric Distribution

Consider the sampling without replacement of a lot of (N) items, (K) of which are of one type
and (N — K) of a second type. The probability of obtaining (x) items in a selection of (n) items
without replacement obeys the hyper-geometric distribution:
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P(X = x) = X n—Xx 0
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] : Number of ways x items are chosen out of K.
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min(n. K) : X cannot be larger than k, the number of items of type I and also cannot be larger
than n, the sample 1tself.



Theorem: Mean and Variance of the Hypergeometric Distribution
(The theorem is stated without proof)

The mean and the variance of the hyper-geometric random variable are given by:

K K | |
Uy =E(X) =n ~ —np (p= ~ is the ratio of items of type (I) to the total population)

- (8] 5)(128) v (33

Remark: These expressions exhibit some similarities with the mean and variance of the
binomial distribution, which were derived earlier and given by
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Binomial Distribution:
Uy =E(X)=np o, = Var(X)=np (1 - p)

In one of the examples considered later, we will demonstrate the

. . . . - . - Typel //TYPEH
differences between the binomial and the hypergeometric distributions.
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Hypergeometric Distribution

EXAMPLE: A committee of seven members 1s to be formed at random from a class with 25

students of whom 15 are girls. Find the probability that: = N=25
a- No girls are among the committee L [x ] [ri—.'c J ~ _ __
b- All committee members are girls S N % = 0,1, .., min(n, K) K=15
c- The majority of the members are girls [” ] n=7

SOLUTION: Let X be the r.v. represents the number of girls in the commuttee. ‘
15) (10
o))
(25

)

15) (10
)]
—
)

15) (10
4 T\ x .
c- P(Majority members are girls) = Z P(X =x)= Z =/
r=4 x=4

Type 11
(N-K)

N-K=10
(N objects)
N=25

a- P(No girls among the committee) = P(X =0) =

b- P(All committee members are girls) = P(X =7) = ;
Typel s Typell
x ,/ (n-x)

Sample of size (n) N=7




EXAMPLE: Fifty small electric motors are to be shipped. However, before such a shipment
is accepted, an inspector chooses 5 of the motors randomly and inspects them. If none of
these tested motors is defective, the lot is accepted. If one or more are found to be defective,
the entire shipment is inspected. Suppose that there are, in fact, three defective motors in the
lot. What is the probability that the entire shipment 1s inspected?

SOLUTION: Let X be the number of defective motors found in the sample.

e X assumes the values (0, 1, 2, 3) according to the hypergeometric distribution given as

el
x ) \n—x ,x =0, 1 ..., min(n, K)

o -
5 . mn
P(X =x) =" *) .x =012 3;
50
. . 0 5
P(Shipment 1s accepted) = P(X =0) = =0.72

S
WSOJ
\5

P(Shipment 1s inspected)= P(X >1)=1-P(X =0)=0.28 Sample of size (n) N=5

Typel Type Il
K=3 _K (N —K)

N-K=47
(N objects)
N=50

/
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Theorem: Binomial Approximation to the Hyperbolic Distribution

For large (N), one can use the approximation K ] (N-K

k P(X:x):[x \ " J x =0, 1 ... min(n, K)

n) . _
P(X::f)“[ J P(1-P)Y7; x=0]1,.n ; P=— "N]
X

N

1

This approximation gives very good results if the sample size to the total pﬂpulationhi <0.1.

Typel Type I
K (N-K)

(N objects)

* Binomial Distribution: When we considered the binomial
distribution, (sampling with replacement), we assumed that
the probability of a success remains constant over the n
repeated trials.

* When the sampling is without replacement, the probability
of a success changes as more items are drawn.

 When the ratio n/N < 0.1, the probability p = K/N of type | Sample of size (n)
does not change much from trial to trial. Hence, p can be Without replacement, K/N

considered a constant, even though the sampling is without ~ ¢hangesfrom trial to trial.
With replacement, K/N remains
replacement.

constant from trial to trial.

Type I //T}*pe 1|
X / (n-x)
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Hyper-geometric Versus Binomial Distributions

EXAMPLE: A box contains 20 good (G) items and 5 bad (B) items. Consider the following

a. Three items are drawn without replacement, find the probability that the sequence of objects obtained
1s (GGB) 1n the given order.

b. Three items are drawn with replacement, find the probability that the sequence of objects obtained is
(GGB) 1n the given order.

c. Three items are drawn without replacement, find the probability that exactly one bad item is obtained.
d. Three items are drawn with replacement, find the probability that exactly one bad item 1s obtained.

Part o P(GGB):PO][N_IJ[ 5 ]:(20][19][5] i 19 G 18 G
25 \25-1)\25-2 25 )\ 24 )\ 23 5B 5B >B
| Y5 N=25 N-1=24 N-2=23
Part b: P(GGB) :(20 ]{20 ][ ]
23NN | | | | | | Sampling without replacement
Part c: P(GGB)+P(GBG)+P(BGG):3(2O]{20_1][ > ]:3[20][19][ ! ]
25 N25-1)\25-2 25 )\ 24 \ 23
5) (20 20 G Z(f G 20 G
[1] [2 ] 20)(19)( 5 ) 9413 > B > -
Partc: P(X =1) =7 = 3[ ][ ][ - ]; Hypergeometric distribution N=25 NE25 N=25
25 25 )\ 24 )\ 23
3 Sampling with replacement

3), un 2 . 5)(20)(20) 9384
Partd; P(X=1)=| |[(p)(1-p) =3 ; binomial distribution (n=3, p=5/25)
1) 25 )\ 25 )\ 25



EXAMPLE: Binomial versus hypergeometric distribution
One hundred small electric motors are to be shipped. However, before such a shipment is accepted, an
inspector chooses 5 of the motors randomly and inspects them. If none of these tested motors i1s
defective, the lot is accepted. If one or more are found to be defective, the entire shipment is inspected.

Suppose that 10% of the shipment are defective, find the probability that the shipment is accepted
a. Using the exact hypergeometric distribution

b. Using the binomial approximation, if valid.

Exact Solution: The problem parameters are: population Size: N = 100; Sample Size n =5

Number of defective items K = (0.1)(100) =10

Type I Type I1
K (N-K) N-Kr90

[;OJ [93J (N objects) N=100
P(Shipment 1s accepted) = P(X =0) = = —~ =0.58375 pel //?,Iiﬂ)l
Sample of size (n)

Approximate Solution: The ratio n/N = 5/100 = 0.05. This justifies the use of the binomial
distribution. Here, p is assumed constant and the binomial parameters are n=15, p = 0.1

5 5
P(Shipment is accepted) = P(X = 0) = [0] p’(1-p) =(0.9) =0.59049|




Poisson Distribution

Definition: A discrete random variable (X) 1s said to have a Poisson distribution 1if it has the

following probablllt;mass function: The sample space is discrete
-b

P X=x)=e"—; x=0,1,2 .:b >0 and countably infinite
x!

We can verify that this 1s, indeed, a valid probability mass function by summing over all values
of X.

x oo bx b bz 63
> P(X =x) = eb—eb[l+—+—+—+,.}
11 21 3

=0 x=0 X ’

The summation on the right side is easily recognized as the power series expansion of e’ .

o X
b

e £4€ T

x=0 X

Ye’ =1.

Theretfore — e e



Mean Value of the Poisson Distribution

Theorem: If X is a Poisson random variable with parameter b, then its mean value is
given as

= E(X) =b

Proof: To find the mean value of X, we follow the same procedure we used to find value of
the binomial and the geemetric distributions.

E(X)= Zte — = xe'bb%

x=1 Yl

=2 e 1.:(1,: ) => (1.: D)

x=1 x=]

Letu=x-1 (orx=u+ 1), and change the index of the summation from x to u. The result 1s
ao 1+l e )
E(X)= Ze EJ——EJZE b——b

=0 a'{ 0 i 'I

=1
As was shown earlier, the summation on the right side equals 1.



Variance of the Poisson Distribution
Theorem: If X is a Poisson random variable with parameter b, then its variance is

o = Var(X) = b
Proof: First, we find E(X (X -1))
bl'

x(x—1)(x—-2)!

E(X(X-1) = iﬂ x(x-De” % —i x(x-De”

oo 5 b."{
E(X (X -1)) = Ze )

Let u = x-2 1n the above summation, or Xx =u + 2, then

o bu+2 o u

E(X(X-1)=>e" =b"> " —=b"

u=0 u ! u=0 u '

But, EX(X-1)=EX>)-EX) = EX?)=EX(X-1)+EX)

The variance of X can therefore be obtained as

2 =EXY) -1t =EX(X-D)+EX)— > = c=b +b-b*=h



Poisson Process
Consider a counting process in which events occur at a rate of (i) occurrences per unit time. Let
X(t) be the number of occurrences recorded in the interval (0, t). We define the Poisson process

by the following assumptions:
|
1- X(0)=0, 1.e., the counting begins at t = 0 with the counter set to 0.

2- For non-overlapping time intervals (0, t1), (t2, t3), the number of occurrences {X(t1) — X(0)
and {X(t3) — X(t2) are independent.

3- The probability distribution of the number of occurrences in any time interval depends only
on the length of that interval.

4- The probability of an occurrence in a small time interval (At) is approximately (LAt).

X(0) X(t)  X(t) X(2) X(t3)
X —X% y a— >
t=0 11 t 2 13

The 1dea is to divide one of the intervals of length T into N subintervals, each with length

At = % The probability of a success in each subinterval (basedon 4)is p =2 [ %] :

The probability of x successes in the N subintervals obeys the binomial distribution

In the next lecture, we will see
that the inter-arrival time
between occurrences follows
the exponential distribution

Ae” 1=0

mﬂ:{ 0 1<0

Occurrence of events
VA A
LY 5

\ / Time

Y Y
T T

An example will be
presented at the end of the
lecture that compares the
Poisson distribution with its
binomial approximation

N—a

N . T
P(sz)z( ]p‘(l—p)-‘**; :r:U.,l,...N:p:ﬂ.{EJ At At At At
X
It can be shown that in the limit as & — =« so that A7 —» 0, we get p=AAt | p= At | P=AAL| p=AAt
_ NY(AaTY . AT . . (AT
LWP(X:‘T):(Y ] ( ] (I_F)ﬁ ¢ = ;x=0.1.2... 0 N subintervals 4T

F x!



EXAMPLE: Messages arrive to a computer server according to a Poisson distribution with
a mean rate of 10 messages/hour

c- What is the probability that exactly three messages will arrive in one hour?
d- What is the probability that at most two messages will arrive in 30 minutes?
e- Find the expected number of messaging arriving in observation time of 90 minutes.

SOLUTION:

P(X=x)= ¢ ALY
a- A =10 messages’hour =» T =1 hour x!
N AT (AT)" _
P(X=x)=e ! x=0.12.... Observation
With A=10 and T = 1, we get 0| interval Nl
x x 3
P(X =x)= o 1041 (10 x 1) _ 10 (10) — P(X =3)= 10 (10)
x! x! 3!
: .- o s (5
b- WithA=10and T=1/2, P(X =x)= 7" (10 x 1”2) ¢ ): -x=0,1,2,...
x! x!
5 5 : 5) 25 :
P(at most two)=P(X <2)=¢" ) ( ) ( ) =e” 1+( )+ 2 = E e”
0! I 21 1 2 2

c. With A=10and T = 3/2, E(X) = AT =(10)(3/2) =15 messages



EXAMPLE: The number of cracks in a section of a highway that are significant enough to require
repair 1s assumed to follow a Poisson distribution with an average of two cracks per mile.

a- What 1s the probability that there are no cracks in a section of 5 miles?
b- What is the probability that there is at least two crack in a section of 3 miles?

SOLUTION: With A=2 and T =5, we get

ar (AT)
X X P(XZI)Z c !
. 5
9- P(X:I): E-Ex} (2 X ) :E-lﬂ (]'0) ;IZO:,].:,Z:,... x!
x| x|
P(no cracks) =P(X =0)= ¢ Observation
Section
0 T
With A=2 and T = 3, we get
b- X X
P(X=x)= e (2 }{IS) —¢° (6)| x=0,12,...
x! x!

P(at least two cracks) = P(X >2) =1-|P(X = 0) + P(X =1)]

0 1
=1- {e{i —(?I +e° %} =1 8¢° 1-7exp(-6)




EXAMPLE: The number of telephone calls that arrives at a certain office is modeled by a
Poisson random variable. Assume that on the average there are five calls per hour.
a. What is the average (mean) time between phone calls?
b. What is the probability that at least 30 minutes will pass without receiving any
phone call?

In the next lecture, we will see
that the inter-arrival time
between occurrences follows
the exponential distribution

c. What is the probability that there are exactly three calls in an observation 1™ 130
interval of two consecutive hours? fr(6) = { € = E(T)=1/2
d. What is the probability that there is exactly one call in the first hour and exactly 0 <0

two calls 1n the second hour of a two-hour observation interval?

Occurrence of events

SOLUTION: P(X =x)= e” (HI)' x=012,. . :A=5 Y v oo
X. \ s A\ d 4 Tilﬂe
a. Here, . =5 calls/hour =» mean time between calls = 60minutes/5calls = 12 minutes T T
< (5 . i
b. Here, T = %. X=0. Therefore, > P(X =0)= &~ (3 x lli 2) =g (AT) (AT
O P(X=x)= T P(X =)= e
52 (5 ' x! x!
c. Here, T=2,X=3 Therefore, = P(X =3) = &~ ( :;2) - gllﬂ) |
“ d. Here, (I, =1 X, =1, (T, =1 X, =2) Observatipn Observation
Interval 1 T Interval 2 T
= P(X,=1nX, =2)=(X, =1) (X, =2) due to independence 0 7 7

sa (5 X 1)1 sa (O % 1)2 57|25
DP(XlzlﬁXE:m:{e T ]{e T}:[SE ]{?e]




EXAMPLE: Binomial Distribution and the Poisson Distribution
A web server receives an average number of 2 queries per minute. We will compute the probability
of no queries, one query, and two queries in one minute using

; . : AT
a. The Poisson distribution P(X _ J__) _ T ( )

b. The binomial approximation
SOLUTION:

x!

a. Poisson Distribution: With /=2 and T = 1, we get Observation

P(X = x)= & CxD) _ .Q) =012 0 Interval
x! x!
P(X=0)=e"=0.13533; P(X =1)=2e&” =0.27067; P(X =2)=2e7=0.27067
b. Binomial Distribution
Let us divide the one minute interval into 60 seconds and use the approximation considered earlier

N) 60
P(Xx)[ [HJ (1)“[ J [ZJ (1——)“ x=012,.60  P(X=x)= [N]p[l—p]
x )N 60
\I L] (ill] 1 59 .
P(X = 0)2[6[} [ij [1_3) e P(XZI)Z(@J[EJ (l—i] 0970618 60|subintervals
0 JLo60 60 1 60 60
2 58 At At At At
60\( 2 2
P(X:Z):[Z ][@} [1—5} — 027528 o= 20t | p= At || P=AAt | p= 24t

Remark: making N larger and larger yields a more accurate approximation. 0




Exponential Distribution

Definition: A random variable T is said to have an exponential distribution with a parameter A
(A>0)1f T has a continuous distribution for which the pdf f,(7) 1s:
_ 4 fi(t 4 Fp(t
Ae” t=0 (0 Exl0)

)=
o1y 1 - 1
The cumulative distribution function is \

0 0

1-e” >0 >t > ¢

FE.(t)=P(T <1)= j I (0)dt { t -

0 r<0 Occurrence of events

VA .

4 4 > _ =T
. N t=0 TV v— Time P =g = e x!
Applications of the Exponential Distribution T T

e The exponential distribution is used to represent the distribution of the time that elapses between occurrences
of a Poisson process.

e [t also represents the waiting time until the first event occurs in a Poisson process.

e |t has been used to represent the period for which a machine or an electronic component will operate without
breaking down.

e The period required to take care of a customer at some service facility (the service time).

e The period between the arrivals of two successive customers at a facility (bank, supermarket,). !




Exponential Distribution

Theorem: If the random variable (T) has an exponential distribution with parameter (A), then:

" 1 _At
2 =E(T)=J- tle Atdt = - = lle t >0
r . 7 fr@®) ; 20
” 2
E TZ — tz;l_ -itdt:_
(T=) fﬂ e e

2 1n\? 1

Proof: These results can be easily obtained using integration by parts.

oo

E{g(X)} = f g(x) fx(x)dx; Xis continuous

— 00



Exponential Distribution

EXAMPLE: Find the mode and median of the exponential distribution
Aer 120
Jr ()= {

0 t<0
SOLUTION:

a. Themodeis ¢ _, =0, since this is the point which has the highest likelihood of occurrence.

Note that here no differentiation is needed to find the point at which the pdf is maximum.

b. The median is some value 7, suchthat P(T<#,)=P(T>1,)=1/2

_In(2) 1 2O

A

Thatis, [Ae™dt =[Ae™dr =1/2= e™ =1/2 =1,
0 t

0

1/2 ¥

t0




EXAMPLE: Suppose that the lifetime T of a power transmission tower, measured in years, 1S
described by an exponential distribution with mean equals to 25 years

1 25

- E_f ]

fr(1)=125

t=0

0 t<0

If three towers, operated independently, werel erected at the same time, what is the probability that
at least two towers will still stand after 35 years.

SOLUTION: First, we find the probability that the lifetime of one tower is greater than 35 years

1 t (o)
> _ L 3 _ 3505 _ 14 _ _ (MY x4 _ yn—x
P(T > 35) J < edi = e ¢ PX=x)=(_) p*(1-p)
Next, let X be the random variable representing the number of operating towers after 35 years.
X follows the binomial distribution with parameters n=3 and p=¢"* . "1

P(X 22) = [2] (p)z(l-p)w[i] (p)’(- p)° é) é)
.
= 3()’1-p)+ (p) ! !




EXAMPLE: The number of telephone calls that arrive at a certain office is modeled as a Poisson
process with an average arrival rate of 4 =1/12 calls minute (5 calls/hour)
a. What is the average (mean) time between phone calls?
b. What is the probability that the waiting time between successive occurrences is between 5
and 10 minutes?
c. What is the probability that at least 30 minutes will pass without receiving any phone call?
Solution:

T . e e L Ae’ >0
The waiting time between arrivals follows the exponential distribution: f.(7) = { 0 0
I <
1 . X(0) X(t1) X(12) X(t3)
a. The mean value of the waiting time E(7')= ——= 12 minutes S X(t) i m.“ —>
1/12 S T T w
10 -t
1 = ,. ,.
b. P(5<T<10)=|— el dt = e — 1" + fp(t
( ) -!. 12 € ¢ © ’/ /Occurreuc:/ of events _T'( }
X 1 - s s : : ! >
c. P(T>30)= j— el dt = e P =" “—~—""——~—  Time A
30 12 T T
We have also solved this part in the previous lecture using the Poisson distribution as
_ : (‘i 30)[] P(X _ X) _ e_ATl (AT1)x .
P(X =0)= e-fﬁ@:e'ﬁmu—:e—li‘ , x! Ol 5 10 30 [
o ¥ 0! Q| Observation Interval T1



EXAMPLE: Suppose that the depth of water, measured in meters, behind a dam is described by an

exponential random variable with pdf:

-x
L =

— £
fr(x¥)=113.5
0 0. W
There is an emergency overflow at the top of the dam, which prevents the depth from exceeding 40.6

m. There is a pipe placed 32.0 m below the overflow that feeds water to a hydroelectric generator

x>0

(turbine).
a- What is the probability that water is wasted though emergency overflow?

b- What is the probability that water will be too low to produce power?
c- Given that water is not wasted in overflow, what is the probability that the generator will have

water to derive it?

SOLUTION:
a- P(water wasted through emergency) = P(X = 40.6 m)= j é e dy = e~
4046 :

8.6

L g - (1-¢e*7)=047

b- P(water too low to produce power) = P(X <8.6m) = j B
5 13,

c- P(generator has water to derive it / water is not wasted)
40.6 -x
I L el dx
P(X >86nX <406) P(B.6< X <40.6) ;135
— =23 . =0.504
el35 dx

40.6 m

X: Water Level

STORED
WATER

Water flow <

8.6

P(X >8.6| X <40.6)= P(X <40.6)
0

P(X < 40.6)

_ Turbine
t (0
1 ' I
40.6 )



Gaussian (Normal) Distribution

Definition: A random variable X is said to have a Gaussian (normal) distribution with a mean
value |1 and variance o3 if X has a continuous distribution for which the pdf f,.(x) is:

—(¥ - ly )’

Jx(x) = : e 2 ox T —O<X<w
2 o'é
Note that:
E(x) = pry = | oy (x)d Var(x) =03 = [ (x— ) f ()
—(x - m)

_G"]i_

dx ; cannot be evaluated in closed form, but can only

Px,<X<x)= J.\/Zi
T O

be evaluated numerically. In this lecture, we will learn how to use standard tables to evaluated
probabilities arising from various Gaussian distributions with different means and variances.

A A A A r 3

X

1 # 2 L1 = L M1 # 2
G1= 02 G1# G2 G1# 62

[
L

A 4
A 4

Bx —

Ox Ug

Ly +0x



Standard Gaussian (Normal) Distribution

Definition: A normal random variable with mean zero and variance one is called a standard
normal random variable. A standard normal random variable is denoted by Z and is obtained

from any normal random variable X with mean [y and variance o through the linear

transformation |Z = A~ Ay
o
X
Z can be written as Z = _Hx which is of the form Z = aX + b|
Oy Oy
1 1 u 1 _:_:
Mean(Z)=u, = E{Z} =aE{X}+b= —pu,——u,=0 ﬁs(*’):j e d
Ox Ox A2
7 o 7 l. ":I‘
Var(£L)=0, =a o, = —o0, =1 A (3
Ox
1 —':1"!5_1':'1
S (x) = e % ; —o<X <D
T oy
R \
el ;—o<z<w

f:(2)= —— i .
2 T Hx =0x ny MUNx +0x X 0 w



Definition: The Cumulative Distribution Function for the Standard Gaussian Distribution

The function ¢(1)=P(Z <u) is used to denote the cumulative distribution function of a

standard normal random variable:
i 1 __'_J
1) = e * d-
d(u) j —
This function is tabulated for ww= 0
For w<0; ¢@(u)=1—¢(—u) -

Area=1- ®(1)

Area = ®(1) - ®(-1)
=P(1) - [1-e(1)]

=22(1) -1
P(b) - ‘I’(ﬂ) -

®(-1) = 1- d(1)

3



Standard Normal Cumulative Probability Table

Gaussian Distribution

d(z) =P(Z < 2)

Cumulative probabilities for POSITIVE z-values are shown in the following table:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
04 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599

0.8621



Cumulative Distribution Function:

P(X <x,)=F,(x,)= j

Let Z = [X _#""']:)d:
UX

d_

D (u)= ".\/ﬁ

P(X<x,)= [ Fx

Therefore, we conclude that:

.
—(x -uy)
B
2 oy

xu'_‘
JX

dx
.,/2 T o,
ax = dx =0 du
CI-X
i Xg— My
_‘ 7x 1
2o, dz= I N

- P(X<x,)=9 [

X

2- P(x, =X <x)=9 [xl

Xo = Hy
g

e 2 dz-




EXAMPLE: Suppose the current measurements in a strip of wire are assumed to follow a
normal distribution with a mean of 10 mA and variance 4 (mA)?. What is the probability that

a measurement will exceed 13 mA?

SOLUTION: X ~ N(u,, 02) = N(0, 4)

P(X >x,)=1-P(X <x,)=1-@ [Iﬂ i ﬁ*‘*’]:}P(X:}IS)zlt:D (

O x

P(X>13)=1-® (1.5):1 — 093319 = 0.06681
Y f(x)

*%

j ¥
n

0



Gaussian Distribution
EXAMPLE

The diameter of a shaft in an optical storage drive i1s normally distributed with mean 0.25
inch and standard deviation of 0.0005 inch. The specifications on the shaft are 0.25 = 0.0015
inch. What proportion of shafts conforms to specifications?

SOLUTION:

£x(x)

P(0.2485<X <0.2515) = @ [""1 - a“qu;, [xa - .HXJ

Oy Oy

0.2485 0.25 0.2515

(%

2515 - 0.25 2485 -0.25
@ 0.251 0.2 @ 0.2485 -0.2 _ 0(3)_Dd(_3)
0.0005 0.0005

= ®(3)—(1-P(3))=20(3)~1=2(0.99865) — 1 = 0.9973




EXAMPLE: The tensile strength of paper is modeled by a normal distribution with a mean of 35
Ib/in? and standard deviation of 2 1b/in?.
a. If the specifications require the tensile strength to exceed 33 lb/in?, what is the
probability that a given sample will pass the specification test?
b. If 10 samples undergo the specification test, what is the probability that at least 9 will
pass the test?
c. If 20 samples undergo the test, what is the expected number of samples that pass the
test‘?‘
SOLUTION: First, we find the probability that one sample will pass the test

P(X >33) = 1-@-[“}1-@: [33 ; 35]:1_¢: (-1)=1-(1-@ (1))=® (1)=0.8413

I
Next, let Y be the random variable representing the number of samples that pass the test out of the

10 tested samples. P(Y=y) = (;l) pY(1—p)"Y

Y follows the binomial distribution with parameters n =10 and p=0.8413

10

10 10
P(Y 29)= [9 J (p)g(l-p)‘+[10J ()°A-p)° =9 (pYU-p)+ (p)° =04791

Finally, here m =20, p 0.8413 and E(Y)=mp =20(0.8413) =16.626
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Gaussian Distribution

EXAMPLE

Assume that the height of clouds above the ground at some location is a Gaussian random
variable (X) with mean 1830 m and standard deviation 460 m. find the probability that clouds
will be higher than 2750 m.

£(x) A
SOLUTION: :
P(X > 2750) = 1- @ [x“ i ’”XJ
O- |
: = : > X
2750 - 1830 1830 2750
1- @ [ J—1¢: (2) A
460 wn

=1-0.9772 =0.0228




Normal Approximation of the Binomial and Poisson Distribution
De Moivre - Laplace Theorem: For large n, the binomial distribution with parameters n and p

can be approximated by a Gaussian distribution with the same mean » p and the same variance

np(l-p).
n _ _ 1 ~(enp)®
( J prd-p) = e*"P). Here, = means asymptotically equal
x J27np(1- p)
Remarks:

e The binomial distribution is discrete while the Gaussian distribution is continuous. Therefore,
the above formula does not mean equality.
e The theorem gives good results when the mean n p > 5 and the variance n p(1-p)>>5.

e The theorem can be u)sed to approximate binomial probabilities by their Gaussian
probabilities.

Px, <X <x))= Z(:‘Jp”‘(lp)”“ ~ @ (xl 3 xuqu) (xu } ﬂ}fj

X=Xy O_X JX

2

Here, u, =np; o, =np(l-p).



33

.26

.20

13

07

00 ==

Normal Approximation of the Binomial and Poisson Distribution

(6,0.5) uy = 3; 0)% = 1.5 (12,0.5) uy = 6; a)% =3

18 i
14

09 \

00 ——="= —

PX=x) = () p*(1 —p)"~* 1

fx(x) = —m

ux =np; ogx =np(l—p)

Source: https://digitalfirst.bfwpub.com/stats applet/stats applet 2 cltbinom.html

.16

13

10

07

03

00 =

(24,0.5) Uy =12; 02 =6

—(x — ux)?

e

2 0%

)

24
12

—o<x <o


https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html

Normal Approximation of the Binomial and Poisson Distribution

EXAMPLE: Consider a binomial experiment with n = 50 and p = 0.2. If X is the number of ‘
14 B

successes, find the probability that P(12 < X <16). NITE
SOLUTION:
+ > (930 x $0-x
Exact solution: P(12<X <16)= >’ (0.2) (1-02)  =0.2749
x=12 _/
Applying the De Moivre - Laplace theorem, we can approximate the probability as: 5 = 2
L, = np=50(02)=10; il =
Mean and Variance DfX‘;M'L‘j P 02) | , note that both are > 5| ® )= j Lz~
o, =np(l- p)=50(0.2)(0.8) =8
— — 16—-10 12-10
PA2< x<16)=0| 2 Lx |_@| o _Lx |_ (I)[—]—':D(—]— 0.2228
op o 8 V8
A more accurate result is: 11 | | 13 14 15 17 ,
12 16
— — 16.5-10 11.5-10
PA15< X <165)=0| 1Lt |_q| 2o _Hx =c1>( ]—(I)( ]:0.2872
op o J8 8




Normal Approximation of the Binomial and Poisson Distribution

EXAMPLE: Consider a binomial experiment with n = 1000 and p = 0.2. If X 1s the number
14 &

of successes, find the probability that P(X < 240). N rre

SOLUTION:

240

1000 T »
Exact solution: P(X < 240) = Z( ](0.2)' (1-02)™" "=0999141
X

x=0 - . X
Xq Py X =

Applying the De Moivre - Laplace theorem, we can approximate the probability as:

+ H, =np =1000(0.2) = 200;
Mean and Variance of X: ) , note that both are > 5.
o, =np(l1—p)=1000(0.2)(0.8) =160 1 :

D (1) = ‘iﬂ

e ? dz

P(X < 240) = 1:1)['”“ ila s } - ':D( 240- 200] — @(3.162) = 0.999216

o /160

X



Normal Approximation of the Binomial and Poisson Distribution

Theorem: If X is a Poisson distribution with mean u, =5 and variance oy = b, then when b

1s sufficiently large, the distribution can be approximated by a Gaussian distribution with the
same mean 4, = b and the same variance &y =b.

b ] b .
b _ 2b - ~
e’ — = e ; Here, = means asymptotically equal
x! N27h
Remarks:

e The Poisson distribution is discrete while the Gaussian distribution is continuous. Therefore,
the above formula does not mean equality.

e The theorem gives good results when the mean b > 5 and the variance 5>5.

e The theorem can be used to approximate Poisson probabilities by their Gaussian ‘

probabilities.

el bﬁ; X _b x _b
Plx. <X <x)= P2 = @ | X () R
(o sn)= 2,7 Rl

X=Xy

Here, u, =b; o, =b.



Normal Approximation of the Binomial and Poisson Distribution

EXAMPLE: Suppose cars arrive at a parking lot at a rate of 50 per hour according to a
Poisson process. Compute the probability that the number of arriving cars in one hour will
be between 54 and 62

Using the Poisson distribution

Using the normal approximation.

SOLUTION: 53 | | 55 56 61 | | 63

Exact solution; >4 62
r (AT) (5[})

P(X =x)=e" =0.2616

=T SON = P(54< X <62) = Z e’

x ! x !

Approximate Solution Using Normal Distribution:
b=2T = u, =T =50, o, =AT

- 5 54 -5
P(54<X<62)= @ (u]—m [ujzo.zm

50 J50

A more accurate result is obtained using
62.5 - 50] D [53.5 - 50

V50

P(335<X <625 = @ [



Normal Approximation of the Binomial and Poisson Distribution

EXAMPLE: Assume the number of asbestos particles in one cm?® of dust follow a Poisson
distribution with a mean of 1000. If one cm’® of dust is analyzed, what is the probability that

less than 950 particles are found?

SOLUTION:

950 .
Exact solution: P(X <950)=> ™™ (1000)

x=0 X I

=0.0578

Approximate:

w, =b=1000; o; =b=1000

P(X<x)= @ [xl—b] = (D[%u—mou] = D(-1.58)=0.057

Vb V1000




Transformation of Random Variables

* Let X be a random variable with a given pmf P(X=x), If discrete, or
pdf f,(x), If continuous.

 LetY = g(X) be a single-valued function of X, then Y Is a random
variable. The objective is to find its pmf/pdf

X Transformation Y

pmf or pdf Y =g(X) pmf or pdf



An Example on Discrete Random Variables: An intercom system master station provides power to
three offices. The probability that any one office will be switched on and draw power at any time
is 0.4. When on, an office draws 0.5 Watts
a. Find the pmf of the power drawn by the intercom system.

b. Find the mean value of the power delivered by the master station.

SOLUTION: Let X be the random variable representing the number of ON offices. X is binomial
with parameters n=3 and p=0.4.

Let Y be the random variable representing the delivered power.

Z _
Y is related to X by Y=0.5 X. Note that: P(Y =y) = P(X =x), where P(X = x)= [ ] p(d-p)—
x

The table below shows the X and Y values and their probabilities.
E(Y)=E(0.5X)=05E(X)=0.5(3)(0.4)=0.6W

X y PX=x) | P(Y=Y)
0 0 (1-py (1-p)’
L] 05 [ 3p-py |3p(-p)
2 1 3p>(1-p) | 3p*(l-p)
3 1.5 p’ p’

Office Office Office
1 2 3

Master Station

X —
e
(0,1,2,3) B

s
(0,0.5,1,1.5)




EXAMPLE: The DC current X that flows through a 1 — () resistor R is a discrete random
variable with the following pmf: P(X =x)=1/6 ; X =-3,-2,-1,0,1,2.

a. Find the pmf of the power in the resistor defined as ¥ = g(X)=RX* = X" .

b. Find the average power dissipated in the resistor.

P(X=x)=1/6
SOLUTION:
X y PX=x) | P(Y=Y) ‘ | | | |
» X
-2 4 1/6 1/6 Probability Mass Function P(X)
-1 1 1/6 1/6
0 0 1/6 1/6 2/6 2/6
1 1 1/6 1/6
2 4 1/6 1/6 /6 1/6
The distribution of Y is: | |
i >
P(Y =0) = 1/6 P(Y =1)=2/6 0 1 4 2 ¥
P(Y = 4) = 2/6 P(Y =9)=1/6 Probability Mass Function P(Y)

Average power = E(Y) = (O)(%]+(l)[§}+(4)[§}+(9)(%] = (%JW




Transformation of Random Variables

Continuous Case:

Let Y = g(X) be a monotonically increasing or decreasing function of (x).

Px<X<x+Ax)=P {1(1’) <Y <y(x+ &x)}
Plx<X <x+Ax)=P {__19 <Y <y+ 5‘__1;}

Fr (DAY = fi (x)Ax

Ax|  fr(x) _ fi ()
fr(») = fx(x) o ‘1_1 = ‘;_1 V<Y<Y,
Ax dx

X+Ax

Px<X<x+Ax) = f fx(w)du = fx(x)Ax

y+Ay
P(y<Y<y+dy) = j fo(Wdu = fy(»)Ay

Y a
+ A
y(x+AX) >
mz){ >
X X+AX

fit



EXAMPLE: The amount, in dollars, charged by a technician is related to the time X, in hours,
needed to complete a task by the formula Y = 10X + 20. The time, X, needed to complete a task

: : : e e e x>0
is a random variable which follows the exponential distribution f, (x) = 0 0
X <
a. Find fy(y) and the region over which it is defined. y
b. Find the mean value of Y.
SOLUTION: Y = 10X + 20; This is a monotonically increasing function.
_ fx (%) dy
Y=20
vy - 20
f;r (x) y - 20 Jx 10
Sy () = . but x = = () = 0
[ . v=20 ; _
i e-f:( - y-20 -0 P ,11--[]2[1]
— e > 20
£o= {1 o > )= 12 ¢
0 Y 20 0 y< 20
10 )
10

Mean value of Y: E(Y)=E(10X+20)=10E(X)+20= I+ 20




EXAMPLE: The profit Y of a manufacturing plant is related to the demand X by the

relationship ¥ =aX +5. Let X be a Gaussian r.v with mean x, variance o7 . Find fy(y).

SOLUTION: Y = aX + 5 1s a monotonic function.

J/x (X) dy y—b
fx =775 —|Hal; x=——
dy/dx dx a
y—b 7
~(x - gty 2 —f‘T - iy )
1 1 A 1 —
fr(¥)=— —e 7 = —e 7
= \/2 T Oy \/2 7w (ac )
—(y—(b +a uy }}: —(y- .-”“fj':
_ 1 2 'I:-t'IG'_]_-}l . 1 2 u:r%-
= e — e
1/2 T (*’-'5-"'1'3"':{)E 1/2 T 53—

7 7

Therefore, ¥ = aX + 5 is Gaussian with mean /., = a # + b and variance o, = a~ o

Result: A linear transformation of a Gaussian random variable is also Gaussian




EXAMPLE: Let (X) be a Gaussian r.v with mean 0 variance 1. Define Y = X?2. Find {¥(y)
SOLUTION: From the figure, we note that

P(yii":::er&y):ZP(xﬂiX{x+&x}

JSr(OAY =2 f (x)Ax

164 ¥

14 4

Ax| 2fr(x) 21 (%) f
Jr(») j}f()@, o & .V _
Ax dx
Here, y=x" ; é =|2.r‘
x




EXAMPLE: Let (X) be a uniform r.v in the interval (-1, 4). If Y = X?. Find fx(y)
1

— —1<x<4
SOLUTION: f,(x)=15 §
0 otherwise 1/5
X 2 x 1/5 1 Y
For (-1=X<1), f;(»)= Z‘QY/((;: = ‘2 X‘/ = e
fe@®) 15 - y X=-1 X=4 %
For (1<X<4), f,(»)= ‘c:;/dx‘ = m = - \/; - %

(1
— 0<y <1
Sy

1

()= —— 1<y <16
} 10,/y

0 Otherwise
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