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Hypergeometric Distribution
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• Binomial Distribution: When we considered the binomial 
distribution, (sampling with replacement), we assumed that 
the probability of a success remains constant over the n 
repeated trials.

• When the sampling is without replacement, the probability 
of a success changes as more items are drawn.

• When the ratio n/N < 0.1, the probability p = K/N of type I 
does not change much from trial to trial.  Hence, p can be 
considered a constant, even though the sampling is without 
replacement.

Without replacement, K/N 
changes from trial to trial.
With replacement, K/N remains 
constant from trial to trial.
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Poisson Distribution
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The sample space is discrete 
and countably infinite



Mean Value of the Poisson Distribution
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Variance of the Poisson Distribution
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0 T

p= 𝜆∆𝑡 p= 𝜆∆𝑡p= 𝜆∆𝑡p= 𝜆∆𝑡

N subintervals

X(t)

t An example will be 
presented at the end of the 
lecture that compares the 
Poisson distribution with its 
binomial approximation

In the next lecture, we will see 
that the inter-arrival time 
between occurrences follows 
the exponential distribution

x x x x x x x x x x x x
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In the next lecture, we will see 
that the inter-arrival time 
between occurrences follows 
the exponential distribution

𝑬 𝑻 = 𝟏/𝝀
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Exponential Distribution

1

Applications of the Exponential Distribution

 The exponential distribution is used to represent the distribution of the time that elapses between occurrences 

of a Poisson process.

 It also represents the waiting time until the first event occurs in a Poisson process.

 It has been used to represent the period for which a machine or an electronic component will operate without 

breaking down.

 The period required to take care of a customer at some service facility (the service time).

 The period between the arrivals of two successive customers at a facility (bank, supermarket,).
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t=0
𝑃(𝑋 = x) = e−𝜆𝑇1

𝜆𝑇1
𝑥

𝑥!



Exponential Distribution
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𝑓𝑇(𝑡) = ቊ𝜆 𝑒
−𝜆𝑡 𝑡 ≥ 0
0 𝑡 < 0

𝐸{𝑔(𝑋)} = න

−∞

∞

𝑔(𝑥) 𝑓𝑋(𝑥)𝑑𝑥 ; X is continuous



Exponential Distribution
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𝑃(𝑋 = 𝑥) =
𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥
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Gaussian Distribution
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Φ 𝑧 = 𝑃(𝑍 ≤ 𝑧)
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𝑍 =
𝑋 − 𝜇𝑋
𝜎𝑋
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𝑍 =
𝑋 − 𝜇𝑋
𝜎𝑋
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Gaussian Distribution

𝑍 =
𝑋 − 𝜇𝑋
𝜎𝑋
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𝑃(Y = y) =
𝑛
𝑦 𝑝𝑦 1 − 𝑝 𝑛−𝑦

Tec
Text Box
10



Gaussian Distribution
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Normal Approximation of the Binomial and Poisson Distribution
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Normal Approximation of the Binomial and Poisson Distribution
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(12, 0.5)(6, 0.5) (24, 0.5)

Source:  https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html

𝑓𝑋(𝑥) =
1

2 𝜋 𝜎𝑋
2
𝑒

− 𝑥 − 𝜇𝑋
2

2 𝜎𝑋
2

; − ∞ < 𝑥 < ∞
P X = x =

𝑛
𝑥

𝑝𝑥 1 − 𝑝 𝑛−𝑥

)𝜇𝑋 = 𝑛𝑝; 𝜎𝑋
2 = 𝑛𝑝(1 − 𝑝

𝜇𝑋 = 3; 𝜎𝑋
2 = 1.5 𝜇𝑋 = 6; 𝜎𝑋

2 = 3 𝜇𝑋 = 12; 𝜎𝑋
2 = 6

https://digitalfirst.bfwpub.com/stats_applet/stats_applet_2_cltbinom.html


Normal Approximation of the Binomial and Poisson Distribution
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Normal Approximation of the Binomial and Poisson Distribution
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Normal Approximation of the Binomial and Poisson Distribution
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Normal Approximation of the Binomial and Poisson Distribution
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Normal Approximation of the Binomial and Poisson Distribution
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= 0.0578



Transformation of Random Variables
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• Let X be a random variable with a given pmf P(X=x), if discrete, or 

pdf fX(x), if continuous. 

• Let Y = g(X) be a single-valued function of X, then Y is a random 

variable. The objective is to find its pmf/pdf 

Transformation
Y = g(X)

YX

pmf or pdf pmf or pdf
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Transformation of Random Variables

𝑃 x ≤ 𝑋 ≤ x + ∆𝑥 = න

𝑥

x+∆𝑥

𝑓𝑋 𝑢 𝑑𝑢 = 𝑓𝑋 𝑥 ∆𝑥

𝑃 y ≤ Y ≤ y + ∆y = න

𝑥

y+∆𝑦

𝑓𝑌 𝑢 𝑑𝑢 = 𝑓𝑌 𝑦 ∆𝑦
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